1 Again, we consider the Lagrangian:

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m_{\phi}^{2} \phi^{2}+\bar{\Psi}\left(i \gamma-m_{e}\right) \psi-i g \bar{\psi} \gamma^{5} \psi \phi+ \\
& +\frac{1}{2} \delta_{3}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \delta m_{0} \phi^{2}+\bar{\psi}\left(i \delta_{2} \phi-\delta_{e}\right) \psi-i g \delta_{1} \bar{\psi} \gamma^{5} \psi \phi
\end{aligned}
$$

Calculate the integrals for the loops below in Dim. Reg.* (no need to integrate the Feynman parameters
everywhere - although it can be useful to do it in the divergent pieces, where it is easy)

.--------.. scalar
fermion

* $\gamma_{5}$ matrices can be tricky as far as Dim. Reg. in concerned. For now use the "Naive Dimensional

Regularization" (NDR) scheme, which means the usual relations for $\gamma_{5}$ :

$$
\begin{aligned}
& \left\{\gamma_{S}, \gamma_{\mu}\right\}=0 \quad \gamma_{N} \\
& T_{R}\left[\gamma_{5} \gamma_{N}^{\prime} \gamma_{\nu} \gamma_{p} \gamma_{\alpha}\right]=4 \in_{\mu \nu p \alpha}
\end{aligned}
$$

we will come back to this point when we deal with anomalies (if you are really curious, check out Peskin page
662 - he explains the HV ('t Hooft and Veltman) scheme there)

